

Lara M. Kueppers
Environmental Science, Policy and Management
University of California, Berkeley
kueppers@nature.berkeley.edu

Climate affects ecosystems

- Climate variables affect ecosystem process rates like plant growth and microbial activity
- Climate also constrains the distribution of plant community types on the landscape
- Climate warming in the coming years, decades and centuries will therefore affect both ecosystem processes and ecosystem species composition and structure in any given spot
- Changes in ecosystem process rates and in species composition will likely combine to alter the ecosystem carbon cycle, resulting in feedbacks to climate

Plant above and belowground biomass and growth

saturated zone

Duff, dead wood and litter decomposition

Soil pools and respiration

atmosphere

saturated zone

Ecosystem carbon cycle

Does climate affect carbon cycling in Rocky Mountain forests and how?

via direct climate effects?

- -- or via species effects?
- -- or both?

Tree species composition of the forest also changes with elevation

Ecosystem carbon cycle

saturated zone

Tree biomass measurement

- Girth and height of all trees taller than 1.4 m
- Allometric equations used to convert height and girth to biomass for each species
- We measured 1378 trees!

Tree biomass does not change systematically with elevation...

... or with climate or species composition variables

Dead wood and duff biomass measurement

- Volume and decay class (0, I, II, III, IV, V) of wood >10 cm diameter
- 3 density cross sections from 2-4 logs per decay class in 3 plots
- Volume * Density = Biomass
- Standing dead snags measured as for live trees
- Duff (recognizable plant litter) sampled from 15 x 15 cm areas on soil surface

Duff (forest floor) biomass increases slightly with elevation...

but not with climate or species composition variables.

Forest floor biomass (kg m⁻²)

Litter decay rates do not differ among species, and change only slightly with elevation

Decay rates are most affected by the *length* and *warmth* of the growing season...

Warmer summers depress spruce and fir decay.

0.018

0.016

0.014

0.012

0.010

0.008

constant,

GDDs

Dead wood biomass increases with elevation, ignoring campfire influence...

Radiocarbon used to measure dead wood decomposition rates

- Outer rings sampled from 2 logs per decay class in 3 plots (N=42)
- Acid-base-bleach treatment used to reduce a ring's shavings to ~cellulose
- Cellulose converted to graphite and analyzed for ¹⁴C at CAMS
- ¹⁴C values corrected for isotopic fractionation by tree
- Pairs of rings from each log dated using OxCal
- Monte Carlo sampling of possible dates to generate ensembles of decay curves

CWD decay rates for pine and spruce wood along the elevation gradient

Species	Elevation	N	Intercept	-k (year ⁻¹)	τ (years)
Both	All	42	0.33	0.0017	580
Pine	Low	11	0.42	0.0029	340
Pine	Mid	10	0.34	0.0016	630
Spruce	Mid	10	0.27	0.0013	800
Spruce	High	11	0.33	0.0015	650

Dead wood decay is faster at low elevations - but very slow everywhere

litter carbon

Litter biomass and decomposition conclusions so far...

- Duff biomass is not affected by climate variables, but dead wood biomass decreases as annual average air temperature warms.
- Needle litter takes 6-9 years to decompose, with spruce and fir needles decaying faster in winter and where summer is shorter and cooler.
- Dead wood decomposes VERY slowly in these forests, taking 340-900 years to disappear.
- Pine logs decompose slightly faster at lower elevations where the conditions are warmer

Soil carbon measured to 60 cm, though data shown are just top 15 cm

- Soil pits dug to 60 cm
- Total carbon and bulk density measured for every horizon and 10 cm increment
- The Rocky Mountains are well named...

Soil carbon (top 15 cm) increases with elevation

Soil respiration field sampling methods

- Permanent 214 cm² chambers 5/plot (N=55)
- Sampled biweekly during snow-free season (once over winter)
- 24-hour exposure of chamber soil to soda-lime traps (~6-7 month exposure for winter)
- Flux is blank and water corrected difference in soda-lime mass per exposed area per day

Seasonal trend in daily soil CO2 flux rate

Annual soil CO2 flux per unit soil carbon

Moisture effect (if real) is inhibitive...

Total winter and annual soil CO2 efflux

soil carbon

Soil carbon and soil CO_2 flux conclusions so far

- Stored soil carbon increases with increasing soil moisture. Wetter sites tend to also be colder...
- Warmer temperatures result in higher rates of CO₂ production per unit soil carbon.
- Because stored soil carbon is higher in wet cold sites where rates of CO₂ production per unit carbon are lower, the total amount of soil respiration per year does not vary with climate.

In the Rocky Mountains, if the climate warms...

- Spruce and fir needle litter may decompose more slowly (- feedback)
- Dead wood may decompose a bit faster (+ feedback)
- Dead wood carbon stores may decrease (+ feedback)
- Soil respiration rates per unit soil carbon may increase (+ feedback)

If the climate becomes wetter...

Soil carbon stores may increase (- feedback)

Soil respiration releases 10²-10³x more C to the atmosphere than CWD decay

Funding sources:

DOE Graduate Research Environmental Fellowship Program

UC Berkeley

Environmental Defense

Center for Accelerator Mass Spectrometry (CAMS- LLNL)

Sigma Xi

Collaborators:

John Harte, John Southon, Paul Baer

Field and lab help:

Amy Taylor, Ben Koch, Brett Greene, Chris Chambers, Christina Cairns, Danielle Bilyeu, Jacquie Pratt, Joe Street, Kathy Darrow, Lara Cushing, Liz Alter, Nathan Kraft, Oliver Platts-Mills, Tracy Held, Tracy Perfors, Veronica Vela, Wendy Brown, CAMS staff